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Abstract 

The three-dimensional development of flow transition in both subsonic and supersonic 

Joukowsky airfoil boundary layers are studied by direct numerical simulation (DNS). The 

.v-imerical simulation is performed by a spatial approach. A full compressible Navier-Stokes 

system in curvilinear coordinates is employed so that we can simulate the transition around 

general geometric configurations. The numerical results agree very well with the linear sta- 

bility theory (LST) at the linear growth stage for both primary and second modes in the 

fiat plate boundary layers. The whole process of controlled flow transition induced by blow- 

ing/suction around airfoils is simulated by directly solving the N-S system with Reynolds 

number around 106. Some differences are found in comparison to the incompressible coun- 

terpart, and some new phenomena for the transition around airfoils are observed which at 

least qualitatively agree with physics. 
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1    Introduction 

In recent years, there has been a continuous and rapid improvement in understanding 

the process of transition from laminar to turbulent flow in incompressible boundary layers. 

Unlike the relatively comprehensive picture of transition scenarios in incompressible flows, 

nonlinear effects responsible for transition at high speeds are still very much a mystery 

(Erlebacher k Hussaini, 1990). In the absence of high-speed experimental data, direct 

numerical simulation (DNS) now plays an important role in understanding high-speed flow 

transition. 

Several works on subsonic boundary layer transition have been published recently by 

other researchers (e.g., Fasel, 1990; Thumm et. al., 1990; Masad k Nayfeh, 1992; Masad 

k Iyer, 1993; Masad k Nayfeh, 1993). As the power of today's computer increases, direct 

numerical simulation (DNS) for realistic flow at certain Reynolds numbers becomes feasible. 

It is generally agreed that compressibility does not change the fundamental physics for 

strcamwise instabilities at subsonic Mach number, but it still has many differences from 

incompressible instability, and the numerical simulation work is still very limited, especially 

for the complex geometries. 

For supersonic flow transition, DNSs of flat-plate boundary layers over a wide range of 

Mach numbers (up to Mach 8 or higher) have resulted in some encouraging quantitative 

agreements (to several digits) with theories (Pruett et al, 1995). Several researchers have 

done great work on DNS for supersonic boundary layer transition (e.g., Erlebacher k 

Hussaini, 1990; Pruett k Zang, 1992; Ei.Jler k Bestek, 1993; Fasel et al, 1993; Pruett 

et al, 1995; Adams k Kleiser. 1996; Guo et al; 1996).  However, the high-speed transition 



is very sensitive to subtle changes in inflow disturbances and basic state flow as well. The 

numerical simulation even for controlled transition in general geometries, such as airfoils, 

still remains a grand challenge up to date. 

An alternative approach for studying flow transition is the PSE (parabolized stability 

equation) method (Herbert k Bertolotti, 1987; Bertolotti, 1991). This approach overcomes 

some severe limitations of the traditional linear stability theory (LST) by accounting not 

only for streamwise variations but also for inhomogeneous and nonlinear terms. Unfortu- 

nately, the cost of PSE increases much faster than that of DNS as the number of spanwise 

modes is increased. PSE thus is limited in practice to investigations of narrow-band forcing 

(Pruett et al, 1995). Furthermore, the parabolization limits information about downstream 

feedback, which is physically inaccurate. Other methods, like compressible linear stability 

theory (LST) (Mach, 1984) and secondary instability theory (SIT) (Ng & Erlebacher, 1992) 

can also provide limited information for flow transition, but are far away from practical 

application. 

Therefore, in order to really solve the practical problems, an efficient and accurate solver 

for the full compressible time-dependent Navier-Stokes system must be developed. To date, 

Navier-Stokes codes fall roughly into two classes depending upon the application (Pruett et 

al.. 1995), aerodynamic codes which can handle complex geometry but are of low accuracy, 

and DNS codes which are of high accuracy but can only handle simple geometries, like 

channel, flat plate, and cone. Our goal is to develop a DNS code which is of high accuracy 

and can also handle complex geometry, so that we can simulate the real time-dependent 

compressible transitional and turbulent flow around aircraft components or subsystems, 

and eventually Air Force flight vehicles at all speeds. 

Liu et al. (1996a,b) developed an approach which enables us to do the simulation 

of the whole process of transition in the incompressible boundary layers for airfoils. For 

the compressible flow, we can still adopt some of the techniques from our previous work. 

Though the implicit schemes have better numerical stability, they consume much more 

computer resources than explicit schemes, especially for complex geometry. For unsteady 

problems the time-step is very small, so that explicit schemes can also work well. In 

addition, explicit code is easy to vectorize and parallelize. In this study, we use explicit 

methods. 

For subsonic transition cases, an explicit time-steeping code is generated using a sixth- 



order central difference for the convection terms, a fourth-order central difference for the 

viscous terms, and a four stage fourth-order Runge-Kutta method for time integration. 

Under this frame, the CFL number can be increased to around 2.8, so that the time- 

step size for numerical stability is not too restricted. For supersonic transition cases, we 

generate our code for explicit time-stepping by adopting a sixth-order compact central 

difference (Lele, 1992) for both convection and diffusion terms, and a three-stage third- 

order compact Runge-Kutta method (Wray, 1986) for time integration. 

The accuracy of the code is examined at the linear instability stage by comparing the 

numerical results with the linear stability theory (LST) at M«» = 0.5 and M^ = 4.5. The 

perturbation is introduced by wall suction/blowing upstream. After a certain distance of 

development, the least-stable mode is picked up and behaves the same as shown by LST. 

Two typical cases of the whole process of transition in the subsonic flat plate boundary 

layers, K-type and H-type breakdown, are calculated to ensure the robustness of the code. 

Transition over 2-D Joukowsky airfoils is then numerically simulated for both subsonic and 

low supersonic Mach numbers. Some new phenomena are observed. 

2    Governing System 

The 3-D, compressible, time-dependent Navier-Stokes equations are considered as the 

governing system in this work. On the general curvilinear coordinate system (£, rj, £), these 

equations can be expressed as follows: 

w here 
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Here. V= (u,v,w)  . The four dimensionless parameters resulting from the nondimension- 

alization are defined as: 
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Re   = 
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POQUQQI* 

ßoo 

1    -    % P) 
where Rg, Cp, and Cv are the ideal gas constant and the specific heats at constant pressure 

and constant volume, respectively.   Generally, we choose Pr = 0.72 and 7 =  1.4 for 

subsonic and low Mach number supersonic flows. Viscosity is normalized by the viscosity 

at freestream, and is assumed to vary according to Sutherland's law. This yields 

M = Tfii|;,    C = mAK[T00. (4) 

The lengths are scaled by some reference length /*. For the flat plate boundary layer flow, 

we use the boundary layer displacement thickness at the specified location, 5*n, where the 

disturbance is introduced. In general, with the dimensionless form, 5* is denned as 

6' =  f°(l - pu)dy. (5) 
JQ 

For the airfoil boundary layer flow, the half-thickness of the airfoil, h, is used as the reference 

length. 

To reduce the machine's round-off error, we decompose the total flow into two parts: 

steady base flow and unsteady perturbation flow for the current work (in general, the base 

flow can also be unsteady flow). Assume 

u = Uo + u\ 

E = Eo + E', 

F = F0 + F', 

G = GQ + G', 

E„ = Ev0 + E'v, 

F„ = Fv0 + F(,, 

G„ = Gv0 -f G„, 

where the subscript "0" denotes the basic steady state flow, and prime (') denotes the 

perturbation. The resulting governing system in the perturbation form is: 

d\J'     d(E-E'v) , d(F'-F'v)  ,  d(G'-G'v)     n 

UT+ dT~ dr, + d( = °- (6j 



In the above governing system, the vectors, the shear-stress tensor, and the heat-flux vector 

are given as follows: 
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Again, the subscript "0" denotes the basic steady state flow, prime denotes the perturba- 

tion, V = (u',v',w')T, and V0 = {u0,vQ,tv0)
T. 

With U' solved, the perturbation components can be retrieved from 
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3    Numerical Method 

Because of the sensitivity of physics, DNS codes must meet the requirements of both 

high accuracy and strong numerical stability. Many high-order discretizations have been 

developed by other researchers, for example, spectral methods (Orszag, 1971), compact 

finite difference methods (Lele, 1992), upwind-biased differences (Rai & Moin, 1993), and 

standard high-order central differences. Because the boundary treatment for the compact 

difference scheme is sensitive, we use, for the subsonic cases, the standard sixth-order 

central difference for the convective terms, fourth-order central difference for the viscous 

terms. In the supersonic cases, we choose the sixth-order compact finite difference method 

(Lele, 1992) for both convection and diffusion terms. 

For time-integration, most people use the so-called compact low-storage third-order 

Runge-Kutta scheme (Wray, 1986) for simulating the transition problem. This method is 

efficient for supersonic flow because with the same CFL number, the real time-step size in 

supersonic cases is relatively larger than in the subsonic situation. So in the supersonic 

cases, we adopt this method. For the subsonic cases, we adopt the classic four-stage 

fourth-order Runge-Kutta scheme with sixth-order central difference in space directions. 

By carefully rearranging the arrays in the code, we can arrange that this fourth-order 

Runge-Kutta scheme also has low storage. 

We can rewrite the system into the semi-discrete form: 

^u;.M + R(u'..fc) = o, (io) 

.'here R(U[ -fc) is the function defined by w 

R(U;-j.fc) = [Lc + LD\V'it ,.*, (11) 

where Lc and LQ are discretized operators for convection and diffusion, respectively. The 

fourth-order Runge-Kutta scheme used to solve a system of ODE corresponding to the 

discretized Navier-Stokes equations can be expressed as follows: 

U'(o)   =   vnn)t 

U'(D   =   u'(o)_^R(o) 
2 

U'(2)     =     U'(0)_^R(D) 



U'(3)   =   u,(0) - AiR(2), 

U'(4)   =   U'(0)-^(R(°> + 2R(1) + 2R(2) + R(3)), 
6 

U'(n+1)     _     u/(4) (12) 

Here, R"' = R(U'^'), the superscript n denotes the time level at nAt, and the mesh 

indices (i,j,k) associated with the solution vector U' and time step At are suppressed for 

convenience. 

4    Boundary Conditions 

The above system can be solved with proper specification of boundary conditions. In 

general, all flow quantities can be specified at the inflow boundary. The prescription of the 

inflow boundary conditions depends on the way that the disturbances are introduced into 

the base flow. We can use either LST or PSE to provide the eigenvectors at the inflow. 

However, we think a periodic blowing/suction at the wall is more natural. 

Figure 1 gives a schematic description of the computational domain. Supposing the 

blowing/suction strip is located relatively far away from the inflow boundary, we can assume 

/'(xo,y,2,0 = 0, (13) 

where /' stands for the variables u',v',w',p', and p', respectively. 

For the boundary conditions at the wall, we use no-slip and isothermal conditions: 

u{x,ywau,:,t) = w'{x,ywau,z,t) = T'(x,ywaU,z,t) = 0. (14) 

The wall normal velocity component is prescribed as a function of x,z, and t to generate 

the disturbances in the computational domain (Rist & Fasel, 1995): 

a A      )   f'Jx.z.t)   xG[xi,x2l, 
[0 x < xi or x > x2. 

In this work, we use 
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/viz,2'*)   =   ewsmh—-—r-lsin^*) 

(27r(x — Xi)\ 
— r-   cos(ßz)sin(uj3dt), 
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where z2d and e3d are the amplitudes for 2D and 3D disturbances, respectively; ß is the 

controlled spanwise wave number; and u2d and u^ are the frequencies for 2D and 3D 

disturbances. This disturbance represents a combination of one 2D wave and a pair of 

oblique waves. 

In the spanwise direction, a periodic boundary condition is imposed. 

In the far field, an exponential decay condition (Fasel et al, 1990) together with the 

sponge layer treatment (Collis k Lele, 1996) are employed to satisfy the non-reflection 

requirement. The exponential decay condition yields 

f   — f     e-i(yNj-yNj-i) 
JNJ  ~ JNJ-l^ 

(15) 

Here, 

7 = 
yfi^ß 

where aR is the real part of the streamwise wave number. 

The sponge layers are also embedded in the inflow and outflow sections (see Figure 1) 

to eliminate the reflection in the streamwise direction. For subsonic flow, the inflow sponge 

is necessary, while for supersonic flow, the inflow sponge can be removed. 

For the Runge-Kutta type method, the sponge is loaded at each single stage, thus, (12) 

needs to be modified by adding an exponentially decaying source term in space directions 

to the right hand side: 

d 
dt 

U'(x, y, z) + R(U'(x, y,z)) = -fd(x, y)U'(x, y, z). (16) 

This artificial term generates a so-called stiff differential equation which needs to be treated 

implicitly. This yields: 

U'(o 

U'(i 

U'(2 

U'(4 

U'(n+1 

=   [U'(°)-fR(0)]/[l + f/,(x,y)], 

YR(I,l/l1 + T/,l(a:'y)1' 
-     fTT'(O) =   [u 
=   [U'^-AtK^}/[\+Atfd(x,y)i 

=    [u'(o) _ ^(R(o) + 2R(U + 2R(2) + R(3))]/[l + Mfd(x, y)], 
6 

= u'(-". (17) 
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The sponge function is given by (see Figure 1 for the location) 

fdi{x,y) = ^i(fff^)Nsl x e [x0,xsl),       y 6 (0,y,) 
/d2(x,y) = As2(jf^)^ x€(xj2,xmax],   y€[0,y,) 

Mz,y) = < 
Mx>v) = A*(-££z)N" x€[xal,xa2\,      y€(y„ymox] 

/*(*,y) = ^(jf^)^ + ^(iS^)^   * € (**,xmax],   y € (y„ymai] 
0 elsewhere 

Here, Asi, As2, As3, N3i, N&, and N& are prescribed constants.   In this work, we choose 

Asl = As2 = A33 = 10, and N3l = Na = Ns3 = 3. 

5    Grid mapping 

To assure that the numerical schemes of DNS have high accuracy, we need to make the 

accuracy of grid transformation schemes two orders higher than that of the flow scheme 

itself. In this paper, we only use a flat plate or a Joukowsky airfoil with zero attack angle as 

our investigation targets, so we are able to use analytical mapping to transfer the physical 

domain to the computational domain. 

In subsonic and low supersonic Mach number flows, the primary mode dominates the 

transition process, while as Mach number goes to over M^ = 3, the second mode (Mach 

mode) becomes dominant. This requires use of different types of grid structure for the 

above two kinds of flows. 

5.1     Grids for primary instability 

For the problem of the flat plate boundary layer transition, the grid mapping function 

we used is 

v(Xy y) =      ^yi* + ymar)        /SfrT ^ 

ymaz(cr + yyJXin/x) V    X 

Here, xin is the location where Re' is defined. Usually, we choose x,n = x2 (see Figure 

1). For the parallel base flow, the boundary layer thickness does not grow, so the above 

transformation becomes 

7?(y) = WlV(a + yT)- (20) 
Vmaxicr + y) 

A typical grid for 2D flat plate boundary layer transition is shown in Figure 2 (a). Note 

that we use straight lines (20) for x < xtn. and parabolas (19) for x > x,-n. This avoided 

using too small time-steps required for the CFL condition. 

11 
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5.2     Grids for second-mode instability 

For high-speed (M^ > 3) flow transition, high gradients are usually concentrated near 

the wall and near the critical layer. With the aid of LST, we can estimate the location of 

critical layers, and then use an analytical mapping which clusters grid points in both wall 

and critical layer regions. For the flat plate with parallel base flow, we use the following 

mapping, which is similar to that used by Pruett et al. (1995). 

1.  In computational space: 

% = (i-i)> (21) 

j = l,2,---,NJ. 

2. Map 77 to [-1,1]: 

where r/1/2 = »fo.,/2. 

* = ^^ (22) 

3. There are five parameters for the mapping: ymax, 2/1/2,2/0, Ay, and r. As shown in 

Figure 2(b), the parameter ymax is the height of the computational domain; j/!/2 

defines a point such that half of the total grid points lie between the wall and this 

point; y0 is usually chosen near the critical layer, and Ay and r are used to adjust 

the stretch strength near y0. The next step maps [-1,1] onto itself but performs a 

clustering of grids about y0; 

^ + rtanh(^ÄT2) = ^f'   "1^^1- (23) 
4. Exponential transformation maps [-1,1] onto a physical interval [0,ymax]: 

a2-l 
VW   =   ymax(       2     ,     ),     -1 <</><!, 

Vmax + JVmax ~ ^Vl^iVmax ~ yi/2) ,      x a    =      X - . 24 

The remaining unknown quantities in (23) are determined as follows: 

V>o   =   log(l + ^-(a2-l))/log(a)-l, 
Umax 

Arj>   =    Ay0/(<fy/#), 

dy/dp    =    -^-a^+lhog(a). 
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Equation (23) is solved by Newton's method to obtain V>, and then (24) is used to obtain the 

grid coordinates in the physical interval [0,t/maz]. For the nonparallel flat plate boundary 

layer, the local boundary thickness will be changed according to S = £,ny x/x,n, so we let 

V = yin\Jx/xin, 

where y,n is the normal-direction coordinate we obtained above (at inflow). All the Jacobian 

metrics are obtained analytically. 

5.3     Conformal Mapping for the Joukowsky Airfoil 

For the airfoil boundary layer flow, we now restrict our problem to be zero-degree 

attack angle. For Joukowsky airfoils, conformal mapping is used to obtain the grids and 

transformation metrics analytically (Liu et al., 1996 a,b). 

The grid generation process can be described as follows (Figure 3): 

1.  (£,»7) =»(&,»*>): 

T)0     =     T]  . 

This step performs a uniform stretch in the streamwise direction so that the length 

of solid wall is 2a. This implies 

6 
<?A = 

2-  (fo,r?o)=M6,*?i): 

A     2a 

m  = 
CTCHmax + 1lm„(lm«i ~ Vo) 

The first formula performs a clustering of grids about £j = —a, and the second one 

performs a clustering of grids about solid wall (r/i = 0). 

3- (£i,»7i)=> (*i,yi): 

By using the Joukowsky transformation 
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we can evaluate Xi and j/i. 

4- (xuyi)=* (x2,y2): 

k'a X2 = Xi-vn> 
V2  = yi- 

This step performs a shift of j/i axis in the streamwise direction. 

5- (12,1/2) => (x,y): 

This step will generate the grids we required. Here, A;' < 1 is used to change the ratio 

of half-thickness/chord-length. For example, with k' = 0.0116, the ratio=l/16. Also, 

we use UE to normalize the airfoil and make the half-thickness equal to 1. 

With the grid generated, we can also obtain the Jacobian metrics between the (f, r\) 

plane and the (x, y) plane analytically. 

6    Filtering 

Because of the use of the central difference scheme, the two-point "saw-tooth" oscilla- 

tions will generally be generated, especially in the low viscous region. Those oscillations can 

induce some spurious physical waves. To avoid this phenomenon, we can either put some 

scheme viscosity through the biased upwinding scheme (Rai & Moin, 1993), or through 

the two-step MacMormack-like dissipative method (Gottlieb & Türkei, 1976), or through 

explicit filtering. Due to the simplicity of explicit filtering, we adopt it in our code. A 

sixth-order filter is applied every 10 time-steps in the wall-normal, direction, and every 20 

steps in the streamwise direction for the subsonic cases. During the study of supersonic 

transition, we find that only the wall-normal direction filtering is necessary. A compact 

sixth-oider filtering is used every 10 time-steps in that direction. 
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7 Intergrid dissipation 

Current supercomputers are still far away from resolving all the length scales for fully 

developed turbulent flow, while the use of models to represent those unresolved scales 

can always cause the case-dependent problem. But, without using any model, most non- 

dissipative DNS schemes will blow up because of the lack of enough dissipative mechanism 

of the codes. The "intergrid dissipation" developed by Liu k Liu (1995) plays a positive 

role in our code. By using the difference of flow quantities between two grid levels, we are 

now able to eliminate those scales badly described by the current grid, and provide some 

dissipation caused by those subgrid scales. 

A brief description is as follows. Suppose fh is the quantity obtained on the global grid 

Gh. We first restrict it to the next coarse level grid G211, and then obtain the new value 

of /M»«") on the global grid Gh. However, if we simply adopt this /*(*«"), the effects of 

small scales will all be ignored. Therefore, a dynamic weight function, cr, is introduced to 

maintain the effect of small eddies. This yields 

/*(»"">     =     ff/*fc/f/
fc<oW> + (1 - a)/fc<oW\ 

a   =   min{2«, 1}, 

« = \(PO + IP'DK
2
 + »* + u,'2). 

Here. Ilh is a full-weighting restriction operator, and I$h is a bi-linear interpolation operator. 

For the detail of intergrid dissipation, see Liu & Liu (1995). 

8 Computational Results and Discussion 

8.1    Subsonic transition 

8.1.1    Flat plate 

The code is first validated for the Mach 0.5 flat plate boundary layer flows. The base 

flow is obtained by solving the compressible similarity system (Stewartson, 1964) using a 

shooting method. The solid is assumed to be adiabatic for the base flow and isothermal for 

the perturbation. The Reynolds number is set to Re" = 875 (based on 5"), and u>2d = 0.1. 

Compressible linear stability theory provides an eigenvalue a = 0.2636 — zO.005623. 

The whole computational domain is set to 15 T-S wavelengths to ensure the development 

of the least stable mode.  The grid is 16/wave x51 x 1, with the last wavelength used as 
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the buffer domain (sponge layer), and the stretch parameter in (19) is a = 2.5. Also one 

T-S period is divided into 1000 time steps. The base flow is assumed to be parallel. Figure 

4(a) depicts the disturbance amplitude of u' and i/, showing that the least stable mode is 

picked up very well and grows as LST predicted. Also, we can see that the sponge layers 

successfully eliminate the reflecting waves in all directions to keep the physical domain very 

clean. Eigenfunctions of this case are also compared with LST and found to agree very 

well (Figure 4(b)). 

Both K-type and H-type transitions in 2-D subsonic flat plate boundary layers are then 

simulated by using the same code. 

For the K-type transition, we use a 193 x 41 x 32 grid, which includes an inflow sponge 

(first 16 streamwise grid points), a suction/blowing slot (next 16 streamwise grid points), 

an outflow buffer domain (the last 16 streamwise grid points), and an approximately 9 

T-S wavelengths physical domain. The stretch parameter in (19) is set to <r = 2.5. The 

Mach number is M^ = 0.5, and T^ = 2SSK. The height of the computational domain 

is 30 (based on the S* at the end point of suction/blowing slot, x2). The amplitude of 

disturbance is set to £2<* = 0.02, e^d = 0.008, the controlled spanwise wave number is 

P = 0.2. and the angular frequency u = 0.1. One forcing period is divided into 1000 time 

steps. It takes around 8 Cray C-90 CPU hours (one processor) to run the code for 10,000 

time steps. As in our previous work, our DNS code can keep running without blowing 

up, and the process of breakdown is simulated up to the limit of current grid resolution. 

Figure 5 depicts the instantaneous contour plots of perturbation streamwise vorticity (CJX) 

and spanwise vorticity (UJZ) on the y" = 0.18595, 0.48165, 0.85052 (x, z) planes after 10 

forcing periods. It shows that the transition process is very similar to that of incompressible 

flow, except that the "legs" of the so-called lambda waves are longer. Also, even after the 

lambda waves break into smaller scale eddies, the major splitting appears in the spanwise 

direction, while the length scale in the streamwise direction is relatively longer. 

For the H-type transition, a 265 x 45 x 42 grid is employed. In the streamwise direction, 

the whole domain is divided into a 16 point inflow sponge, a 24 point suction/blowing slot, 

a 24 point outflow buffer domain, and a physical domain. The stretch parameter is a = 2.2. 

The Mach number is set to M^ = 0.8, and T^ = 2SSK. The height of the computational 

domain is 25 (based on the 5" at the end point of suction/blowing slot). The amplitude 

of disturbance is set to s2(f = 0.012, e3d = 0.004, the controlled spanwise wave number is 
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ß = 0.22, and the angular frequency w2<* = 0.15075. One forcing period is divided into 

550 time steps. It takes around 15 Cray C-90 CPU hours (one processor) to run the code 

for 12 forcing periods. Figure 6 shows the instantaneous contour plots of perturbation 

streamwise vorticity {u}x) and spanwise vorticity (u;,) on the y* = 0.1471, 0.3768, 0.6563 

(x,z) planes after 11 forcing periods. Basically, the transition process is very similar to 

that of incompressible flow, with staggered structure of the lambda waves at the secondary 

instability stage. Again, the "legs" of the lambda waves are relatively longer. One difference 

from the incompressible H-type transition is that the staggered lambda waves can only 

be observed in a very short regime for the compressible case. After that, the staggered 

structure is contaminated by the invading lambda waves from upstream, and a branching 

structure can be observed clearly from the vorticity contours. However, the structured 

pattern can be observed in a relatively long regime, so the compressibility has an overall 

effect of stabilizing the subharmonic modes, and makes the transition zone longer. 

Since the perturbation is introduced through blowing/suction, many disturbance modes 

may coexist; this can cause our simulations to be more or less like the detuned type (Ng & 

Erlebacher, 1992). 

8.1.2    Joukowsky airfoil 

The first case here is the fundamental breakdown of a subsonic Joukowsky airfoil 

boundary layer transition. Note that now the reference length is the half-thickness of the 

airfoil, h. The parameters are set as follows: 

Mro = 0.5, 

T«, = 288/v, 

Reh = 4000   {ReL = 160,000), 

Pr = 0.72, 

u = 0.8, 

ß = 1-3, 

e2d = 0.015, 

£zd = 0.01, 

a = 0.25 , 



The chordlength/half-thickness is 40, which makes the Reynolds number (based on the 

chordlength) ReL = 160,000. A 281 x 41 x 31 grid is employed. The wing is placed from 

streamwise grid point 41 to 261, and the blowing/suction slot is embedded between point 

71 and point 79. The height of the computational domain is around 16/i, and the crest 

point of the airfoil is located at the position of 25% chordlength. Figure 7 gives a part of 

the grid for this case. For the time stepping, one forcing period is divided into 1200 time 

steps. 

For the airfoil boundary layer transition, one major issue is that it contains both fa- 

vorable and adverse pressure gradients in the streamwise direction. Before the disturbance 

reaches the crest point of the airfoil, the favorable pressure gradient will stabilize the flow, 

and thus the amplitude of disturbance is damped. After the disturbance has passed the 

crest point, the gradually increased adverse pressure gradient will destabilize the flow, and 

the amplitude of disturbance is expected to grow faster than that in the zero-pressure- 

gradient flat plate. This phenomenon can be observed clearly in the 2-D case. Figure 

8 depicts the maximum perturbation rms amplitude in the computational domain. The 

parameters we used are the same as above, except e2d = 0.001, e3d = 0. Clearly, the pertur- 

bation damps much faster than that in the flat plate case, until it reaches the crest point 

of the airfoil. After that, a very strong amplification shows up. This can cause breakdown 

when 3-D disturbances are introduced. 

Figure 9 gives the contour plots of perturbation u', v',w', p', p' for the above fun- 

damental transition case. Similar to the flat plate boundary layer case, it first generates 

lambda waves; then the lambda waves break into smaller scale vortices, and cause the tran- 

sition. One difference is that, in the present case, the perturbation u' has a relatively strong 

anisotropic structure (Figure 9 (a)). Till now, we have not found an answer to explain this 

phenomenon. Therefore, a more detailed investigation needs to be done later. 

The final case studied for subsonic boundary layer transition for a 2-D airfoil is the 

subharmonic transition case. We have the following setups: 

Mx   =   0.6, 

Reh   =   13400  (ReL = 670,000). 

rTO   =   288.88tf, 
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Pr = 0.72, 

uu = 1.206, 

u3d = 0.603, 

ß = 1.76, 

e2d = 0.01, 

ezd = 0.0075, 

a   =   0.15, 
.    n   37T, 

A 361 x 45 x 41 grid is used, in which the wing is located between the 41st and 321st 

streamwise grid point. The height of the computational domain is about 20 h, and the 

chordlength/half-thickness is 50. The blowing/suction slot is located between the 81st and 

93rd grid points. For the time stepping, one forcing period (based on a;2j) is divided into 

1000 time steps. It takes around 25 Cray C-90 CPU hours (one processor) for our code 

to run for 11 forcing periods. The contour plots of perturbation u', v', w', p', p' for this 

case after 11 forcing periods are given in Figure 10. As mentioned by Ng & Erlebacher 

(1992), the subharmonic modes are the most unstable modes. This results in earlier onset 

of transition. In fact, the staggered structure of lambda waves is much weaker than that 

in the incompressible flow. Even after a relatively long distance, we can still find that u' 

and p' have large length scale in the streamwise direction, while the length scale in the 

spanwise direction becomes very small. This could cause a strong anisotropic structure for 

the turbulent flow around airfoils. 

8.2    Supersonic transition 

8.2.1     Code validation 

The code for supersonic transition first is validated for the Mach 4.5 flat plate boundary 

layer flows. The base flow is obtained by solving the compressible similarity system (Stew- 

artson, 1964) using a shooting method. The Reynolds number is set to Re* = 10,000, 

Pr = 0.7, Too = 61.111, and w2(f = 2.0467. The constant C in Sutherland's law is 

C = 110.33. Compressible linear stability theory provides an eigenvalue a = 2.248—iO.0308. 

A 16/wave xl41 x 1 grid is used, with the last wavelength used as the buffer domain. 

Again, one T-S period is divided into 200 time steps. For blowing/suction case, Eitler and 
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H. Bestek have shown that a second mode wave and an additional wave, which are called 

"multiple-viscous-solution", will be excited. Since the "viscous-solution" is weakly damped, 

the second mode becomes dominant due to its large amplification rate if the computation 

domain is long enough. We reach this goal by using the following approach: pick up all the 

eigenfunctions just before the buffer domain, using them as the inflow conditions, instead 

of using the blowing/suction to excite the perturbation for the next computation. Figure 

11 depicts the disturbance amplitude of v! and v', showing that the least stable mode is 

picked up very well and grows almost the same as LST predicted. Though we still can 

observe a long wave in the amplitude curve, it is very weak. 

A wall-normal distribution of the eigenfunctions for the Mach 4.5 second mode is also 

obtained and compared at Re* = 10,000 in Figure 12. It can be observed that even with 

blowing/suction, our code can still pick up the least stable mode which matches the result 

obtained from LST very well. 

8.2.2    Joukowsky airfoil 

Though the second mode is dominant for high Mach numbers, the transition zone is 

relatively long. On the other hand, for low supersonic Mach number, the viscous first-mode 

disturbances are dominant in the linear and nonlinear stability stages. Two breakdowns at 

Mach 1.6 are simulated in this work: fundamental breakdown and oblique breakdown. 

For the fundamental breakdown, we use the following parameters: 

M«, = 1.6, 

Reh = 15,000, 

I» = 300 A', 

Pr = 0.72, 

ui2d = 0.75, 

ß = 2.28, 

e2d = 0.02, 

63d = 0.001, 

a = 0.25, 

* €  [-ß'ß]- 
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The estimated wave angle of the enforced disturbance is ij> « 60°. A 361 x 71 x 37 grid 

is used, with the wing located between the 41st and 321st streamwise grid points. The 

height of the computational domain is about 23/», and the chordlength/half-thickness is 

60, which makes the Reynolds number (based on the chordlength) Rei, = 900,000. The 

blowing/suction slot is located between the 61st and 77th grid points. For the time stepping, 

one forcing period (based on u;2j) is divided into 600 time steps. It takes around 25 CRAY- 

C90 CPU hours and 25 MW memory for our code to run 14 forcing periods. 

Figure 13 depicts the instantaneous contour plots of u', v', w', p', and p' after 14 

forcing periods. It can be seen that even though we imposed only a pair of very weak 

3-D disturbances (5% the magnitude of 2-D's), those disturbances are very unstable (see 

Figure 13 (c) for spanwise component of perturbation velocity). The process of transition 

is still the same as that in subsonic flow: 2D and 3D disturbance development, generation 

of lambda waves, and high shear layer breakdown. Not as we expected in the low speed 

boundary layer flow, the spanwise velocity components can grow even in the favorable- 

pressure-gradient regime before the crest point of the wing, where the 2-D disturbances 

decrease in this regime. A quick breakdown occurs after the disturbances enter the adverse- 

pressure-gradient regime, and the disturbance quantities reach the saturated level very 

early. This property can be observed more clearly form Figure 14, in which we give the 

maximum rms value of the perturbation quantities in two selected (x, y) planes, z = 0 and 

z = jp. The quick growth of the disturbances appears, and after breakdown, the rms of 

disturbances keeps at a relatively stable level (saturated). 

The instantaneous contour plots of the streamwise and spanwise perturbation vortices 

as well as the perturbation vorticity magnitude are also given in Figure 15, which provides 

a better understanding of the fundamental breakdown structure for the 2D airfoil in low 

supersonic Mach number. 

Another case simulated in this work is the "oblique breakdown". For this case, the 

same parameters as for the simulation of fundamental breakdown are used, except for 

the following differences: At the blowing/suction slot, we impose only one pair of 3D 

disturbance waves with finite amplitude £3^ = 0.0075, and with controlled spanwise wave 

number ß = 1.59, making the estimated wave angle i\) = 45°. 

As in the fundamental breakdown case, the 3D disturbances can grow in the favorable 

pressure gradient regime before they reach the crest point of the wing.  This is different 
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from incompressible and subsonic flow transition. A quick breakdown occurs after the 

disturbances enter the adverse pressure-gradient regime. Figure 16 gives the maximum 

rms value of the perturbation quantities in two selected (x,y) planes, z = 0 and z = ~. 

Quick growth of the disturbances is observed. By comparing Figure 14 and Figure 16, 

we find that the disturbances in the oblique breakdown case increase faster than those in 

the fundamental case. The saturated level also appears earlier than in the fundamental 

breakdown case. Therefore, we can consider that the oblique breakdown is a major factor 

for boundary layer transition at low supersonic Mach number. 

Figure 17 depicts the instantaneous contour plots of disturbance quantities, u', v', u/, p', 

and p'. Obviously, the structure of 3D disturbance development is different from that of the 

fundamental case. No lambda wave is observed in this case. Instead, a "zig-zag" type of the 

vortices are observed, followed by a branching structure. The instantaneous contour plots 

of the streamwise and spanwise perturbation vortices as well as the perturbation vorticity 

magnitude are given in Figure 18, which provides a better understanding of the oblique 

breakdown structure for the 2D airfoil in low supersonic Mach number. It can also be found 

that two high-shear layers per wavelength in the spanwise direction appear, organized in 

the streamwise direction in a staggered pattern. 

9    Concluding Remarks 

In summary, the current approach shows the ability of DNS to simulate the whole process of 

flow transition around 2-D airfoils with medium Reynolds number (« 106) for both subsonic 

and low supersonic Mach numbers. It demonstrates that realistic numerical simulations 

of compressible transition phenomena based on the spatial approach are already feasible 

with current generation of supercomputers. Although the computational results agree well 

with LST and qualitatively agree well with theory and experiment, the code still needs 

to be further validated. Once validated, this simulation can be extended to explore new 

physical phenomena and may partially substitute for wind tunnel experiments, especially 

for high-speed flows. 
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Figure 1. Sketch of the computational domain of a 2D airfoil with zero attack angle. 
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rimary Figure 2 (a). A typical 2D grid for simulating flat plate boundary layer transition (p 
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Figure 2 (b). A typical 2D grid for simulating flat plate boundary layer transition (second 
mode). 
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Figure 3. Conformal mapping process to obtain the grids for the Joukowsky airfoil. 
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Figure 4. (a) Comparison between DNS and LST of the disturbance amplitude of the 
u' and v'. (b) Comparison of DNS and LST results for the amplitude eigenfunctions of 
subsonic flat plate boundary layer. Af«, = 0.5, Re' = 875, UJ = 0.1. 
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Figure 5. (a) Instantaneous contour plots of the streamwise perturbation vorticity LüX on the 
y~ = 0.18595, 0.48165, 0.85052 (x,z) planes (from bottom to top) at t = 10T for the flat 
plate fundamental breakdown case. 
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Figure 5. (b) Instantaneous contour plots of the spanwise perturbation vorticity uz on the 
y* = 0.18595, 0.48165, 0.85052 (x, 2) planes (from bottom to top) at t = 10T for the flat plate 
fundamental breakdown case. Flow parameter: M^ = 0.5, T^ = 288ÜT, Re* - 875, Pr = 
0.72, u = 0.1,   e2d = 0.02, e3d = 0.008, ß = 0.2. Grids: 193 x 41 x 32. 
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Figure 6. (a) Instantaneous contour plots of the streamwise perturbation vorticity uix on the 
1471,0.3768,0.6563 (x,z) planes (from bottom to top) at t = 11T. 
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Figure 6. (b) Instantaneous contour plots of the spanwise perturbation vorticity uz on the 
y* = 0.1471, 0.3768, 0.6563 (x,z) planes (from bottom to top) at t = IIT for the flat plate 
subharmonic breakdown case. Flow parameter: M^ = 0.8, Too = 288K, Re = 1675, Pr = 
0.72, U2d = 0.15075,   e2d = 0.012, e3d = 0.004, ß = 0.22. Grids: 265 x 45 x 42. 
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Figure 7. Grid structure for the subsonic Joukowsky airfoil transition simulation. 
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Figure 8.   Streamwise distribution of the maximum perturbation rms amplitudes for the 
2-D Mach 0.5 Joukowsky airfoil. Reh = 4000, u = 0.8. 
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Figure 9. 
Instantaneous contour plots of 

(a) u', (b) v', (c) w', (d) //, (e) p' 
for the fundamental breakdown case 

of a Mach 0.5 airfoil boundary layer on the 
j = 10 grid surface (» 0.0641Ä) at t = 10T. 

Flow parameter: M^ = 0.5, T^ = 288K, Reh = 4000, 
Pr = 0.72, u = 0.8, e2d = 0.015, e3d = 0.01, /3 = 1.3. 

"tlrids: 281 x 41 x 31, chordlength/half-thickness=40 (ReL = 160,000). 
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Figure 10. 
Instantaneous contour plots 

of (a) «', (b) v\ (c) w>, (d) p', (e) pf 
for the subharmonic breakdown case 

of a Mach 0.6 airfoil boundary layer on the 
j = 10 grid surface (« 0.0437/i) at t = IIT. 

Flow parameter: M^ = 0.6, T^ = 288.88ÄT, Äe^ = 13400, 
Pr = 0.72, u = 1.206, e2d = 0.01, e3i = 0.0075, ß = 1.76. 

x 45 x 41, chordlength/half-thickness=50 (ReL = 670,000). 

3 5 



0.0011 
Amplitude of perturbation 
 1  

DNS: u' amplitude  
LST: u' amplitude O 
DNS: v' amplitude  
LST: v' amplitude + 

115 
x* 

Figure 11. Comparison between DNS and LST of the disturbance amplitude of the second- 
mode disturbance u' and v' for Mach 4.5 flat plate boundary layer. Re* = 10,000, u) = 
2.0467. 
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Figure 12.   Amplitude eigenfunctions for supersonic flat plate transition:   comparison of 
DNS and LST results for the second-mode disturbance at M^ = 4.5 and Re* = 10,000. 
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Figure 13. 
Instantaneous contour plots 

'of (a) u', (b) v>, (c) w'\ (d) p', (e) p' 
for the fundamental breakdown case of a 

Mach 1.6 Joukowsky airfoil boundary layer 
on the j = 10 grid surface (« 0.05/i) at t = 12T. 

Flow parameter: M^ = 1.6, T^ = 300ÜT, Äefc = 15000, 
Pr = 0.72, w = 0.75, e2d = 0.02, e3(i = 0.001, ß = 2.28. 

Grids: 361 x 71 x 37, chordlength/half-thickness=60 (ReL = 900,000). 

3 7 



logio [(Maximum rms perturbation) X 1000] 
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Figure 14. Streamwise distribution of the maximum rms disturbance for the fundamental 
breakdown case. M«, = 1.6, F = 50 x 10"6, and ReL = 900,000. Upper: z = 0., lower: 
z = .0689. 
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Figure 15. Instantaneous contour plots of (a) Lü'X, (b) u^, (c) |o/| for the fundamental 
breakdown case of a Mach 1.6 Joukowsky airfoil boundary layer on the j = 20 grid surface 
(« 0.12/1 from wall) at i = 12T. Flow parameter: MTO = 1.6, T1«, = 300K, Reh = 15000, 
Pr = 0.72, w = 0.75, e2d = 0.02, e3£f = 0.001, ß = 2.28. Grids: 361 x 71 x 37, 
chordlength/half-thickness=60 (ReL = 900,000). 
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l°9io [(Maximum rms perturbation) X 1000] 

l°9io [(Maximum rms perturbation) X 1000] 

Figure 16. Streamwise distribution of the maximum rms disturbance for the oblique break- 
down case. Mro = 1.6, F = 50 x 10"6, and ReL = 900,000. Upper: z = 0. lower 
z = 0.988. 
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,0,0-^   <^.-,< _ r&ty&z&s^**^ ^ Figure 17. 

Instantaneous contour plots 
'of (a) «', (b) t,', (c) u,', (d) p', (e) />' 
for the oblique breakdown case of a 

Mach 1.6 Joukowsky airfoil boundary layer 
on the j = 10 grid surface (« 0.05/*) at t = 12T. 

Flow parameter: M^ = 1.6, T«, = 300 If, Äefc = 15000, 
Pr = 0.72, a; = 0.75, e2d = 0.0, e3d = 0.0075, /3 = 1.59. 

Grids: 361 x 71 x 37, chordlength/half-thickness=60 (ReL = 900,000). 
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Figure 18. Instantaneous contour plots of (a) u'x, (b) u)'z, (c) |o/| for the oblique breakdown 
case of a Mach 1.6 Joukowsky airfoil boundary layer on the j = 20 grid surface (« O.l/i) at 
* = 12T. Flow parameter: M«, = 1.6, T«, = 300K, Reh = 15000, Pr = 0.72, w = 0.75, 
e2(f = 0.0, e3d = 0.0075, /? = 1.59. Grids: 361 x 71 x 37, chordlength/half-thickness=60 
(ReL = 900,000). 
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